🔢
Algorithms & Data
  • Overview
    • 1. Sort
      • Selection Sort
      • Bubble Sort
      • Insertion Sort
        • Insertion Sort:: singly linked list
          • Recursive
          • Using Array O(N), O(N)
          • Using Iteration O(N), O(1)
      • Quick Sort
      • Merge Sort
      • Heap Sort
      • Counting Sort
        • Counting Sort
          • Sort a String
        • Bucket Sort
        • Radix Sort
      • Topological Sort
    • 2. Data Structures
      • Array
      • Stack
      • Queue
      • Tree
        • PreOrder, InOrder, PostOrder
          • Transfer between each
          • Traverse
        • Binary Tree
          • Binary Search Tree
      • Graph
        • Data Structure
        • Traverse Graph
        • Detect a cycle in a Graph
          • DFS *
            • undirected clean code
          • Union Find
          • Count edges - undirected only
      • Linked List
      • Trie
        • Javascript
        • Java
      • Union Find
        • Detect Cycle with Disjoint-set Union Find
        • Kruskal Algorithm
      • Heap
      • Matrix
      • Union Find: Disjoint Set
    • 3. How to construct Algorithm? Paradigm
      • Greedy Algorithm
        • Prim
        • Dijkstra
        • Prim vs Dijkstra
      • Dynamic Planning Techique
      • Dynamic Planning
      • Divide And Conquer
      • Brute force
      • Shortest path
        • BFS
        • Dijkstra algorithm: directed, shortest path
      • MST (Minimum Spanning Tree)
        • Prim vs Digkstra
        • Prim, Kruskal Why? only undirected graph?
        • Kruskal's Algorithm: undirected
        • Prim's Algorithm: undirected
  • Algorithm Problems
    • Problem Sources
    • AlgoExpert
      • Hardest
        • Merge Sort
      • Hard
        • Prim’s Algorithm
        • Dijkstra’s Algorithm
        • Kruskal’s algorithm vs Prim’s algorithm
        • Topological Sort
        • Max Sum Increasing Subsequence
        • Find Nodes Distance K
        • Max Path Sum In Binary Tree
        • Validate Three Nodes
        • Same BST ?
        • Zigzag Traverse
        • Min Rewards
        • Largest Range
        • Subarray Sort
        • Four Number Sum
      • Medium
        • Missing Numbers
        • Beat Seat
        • Suffix Trie Construction
        • One Edit
        • Minimum Characters For Words
        • Reverse Words in String
        • Valid IP Addresses
        • Group Anagrams
        • Longest Palindromic Substring
        • Next Greater Element
        • Sort Stack ⇒ recursive good -
        • Sunset Views
        • Balanced Brackets
        • Min Max Stack Construction
        • Three Number Sort ⇒ counting sort or radix sort ⇒ three pointer with in-place swap
        • Staircase Traversal ⇒ it is like the number of ways to change
        • Phone Number Mnemonics ⇒ can use word and index to create each case without concatenation
        • Power Set
        • Permutations -
        • Merging LinkedLists
        • Sum Of Linked Lists -
        • Remove Kth Node From End -
        • Linked List Construction - Doubly Linked List ?
        • Min Heap Construction
        • Valid Starting City
        • Task Assignment - use two pointer
        • Two Colorable - Graph
        • Minimum Passes Of Matrix
        • Cycle in Graph -
        • Remove Islands -
        • Youngest Common Ancestor
        • River Sizes -
        • Breadth First Search
        • Single Cycle Check
        • Union Find
        • Stable Internships
        • Kadane’s Algorithm
        • Levenshtein Distance
        • Min Number Of Coins For Change
        • Number Of Ways To Make Change
        • Number Of Ways To Traverse Graph
        • Max Subset Sum No Adjacent
        • Symmetrical Tree
        • Merge Binary Trees
        • Height Balanced Binary Tree
        • Find Successor
        • Binary Tree Diameter
        • Invert Binary Tree
        • Reconstruct Bst
        • Find Kth Largest Value In Bst
        • Min Height BST
        • BST Traversal
        • Validate Bst
        • BST Construction
        • Zero Sum Subarray + find indices of sub array
        • Merge Overlapping Intervals
        • First Duplicate Number
        • Array of Products
        • Longest Peak
        • Spiral Traverse
        • Monotonic Array
        • Move Element To End
        • Smallest Difference
        • Three Number Sum
      • Easy
        • Middle Node
        • Evaluate Expression Tree
        • Insertion Sort
        • Semordnilap
        • First Non Repeating Character
        • Generate Document
        • Run Length Encoding
        • Caesar Cipher Encryptor
        • Palindrome Check
        • Selection Sort
        • Bubble Sort
        • Find Three Largest Sum
        • Binary Search
        • Product Sum
        • Nth Fibonacci
        • Remove Duplicates From LinkedList
        • Tandem Bicycle
        • Class Photos
        • Minimum Waiting Time
        • Depth-first Search
        • Node Depths
        • Branch Sums
        • Find Closest Value In Bst
        • Non Constructible Change
        • Tournament Winner
        • Sorted Squared Array
        • Validate Subsequences
        • Two Number Sum
    • Daily Algorithms
      • 1. Topological Sort
      • 2. MST- Prim, Kruskal
      • 3. Cycle in a Graph
        • [Algo] Cycle in Graph (directed)
      • 4. Maximum sub array sum
        • Problem
        • Solutions
          • Brute Force
          • Divide And Conquer
          • Kadane's Algorithm - Dynamic
        • Empty Array allowed
        • Empty Array not allowed
        • Empty Array Not Allowed + circular
          • Double array:: O(N), O(N)
          • minimum subarray:: O(N), O(1)
      • 5. Detect a Cycle in a graph with a disjoint set (Union Find)
      • 6. Kruskal's Algorithm - Union Find
      • 7. Prim's Algorithm - Priority Queue
      • 8. Sort Array nlogn
      • 9. Shortest path - BFS
      • 10. Dijkstra algorithm
      • 11. Minimum spanning tree - points
      • 12. Minimum depth in a binary tree
      • 13. [Counting Sort]: H-index
      • 14. [shortest path]: Floyd-Warshall
      • 15. [Linked List]: reverse list
      • 16. [Linked List]: swap nodes in pairs
      • 17.[Linked List]: Merge k Sorted Lists
      • 18.[Linked list]:234. Palindrome Linked List
      • 19. [Linked List]: Linked List Cycle
      • 20. [Linked List] Reverse Linked List II
      • 21. [Linked List] sort a list - asc
      • 22. [Sort] Quick Sort
      • 23. [matrix] Spiral Matrix
      • 24. [matrix] Number of Islands
      • 25. [matrix] Valid Sudoku
      • 26. [matrix] Sudoku Solver
  • Top 75 LeetCode Questions to Save Your Time
    • Source
    • Problems
      • Interval
        • 56. Merge Intervals
        • 435. Non-overlapping Intervals
        • x 57. Insert Interval
      • Heap
        • x 295. Find Median from Data Stream
        • 347. Top K Frequent Elements
        • 23. Merge k Sorted Lists
      • Array
        • Untitled
        • 10. 11. Container With Most Water
        • 9. 15. 3Sum
        • 8. 33. Search in Rotated Sorted Array
        • 7. 153. Find Minimum in Rotated Sorted Array
        • x 6. 152. Maximum Product Subarray
        • 5. 53. Maximum Subarray
        • 4. 238. Product of Array Except Self
        • 1. Two Sums
        • 2. Best Time to Buy and Sell Stock
        • 3. Contains Duplicate
      • Binary
        • 190. Reverse Bits
        • 268. Missing Number
        • x 338. Counting Bits
        • 12. 191. Number of 1 Bits
        • 11. 371. Sum of Two Integers
      • Graph
        • x 417. Pacific Atlantic Water Flow
        • x 128. Longest Consecutive Sequence
        • 207. Course Schedule
        • 133. Clone Graph
        • 200. Number of Islands
      • Tree
        • x 297. Serialize and Deserialize Binary Tree
        • x 105. Construct Binary Tree from Preorder and Inorder Traversal
        • x 212. Word Search II
        • 211. Design Add and Search Words Data Structure
        • 208. Implement Trie (Prefix Tree)
        • 235. Lowest Common Ancestor of a Binary Search Tree
        • 230. Kth Smallest Element in a BST
        • 98. Validate Binary Search Tree
        • 572. Subtree of Another Tree
        • 297. Serialize and Deserialize Binary Tree ?
        • 102. Binary Tree Level Order Traversal
        • 124. Binary Tree Maximum Path Sum
        • 226. Invert Binary Tree
        • 100. Same Tree
        • 104. Maximum Depth of Binary Tree
      • Dynamic Programming
        • x 62. Unique Paths
        • x91. Decode Ways
        • 55. Jump Game
        • x 213. House Robber II
        • 198. House Robber
        • 377. Combination Sum IV
        • x 139. Word Break
        • 1143. Longest Common Subsequence
        • 300. Longest Increasing Subsequence
        • 322. Coin Change
        • 70. Climbing Stairs
        • 2023 0709 39. Combination Sum
      • String
        • x 76. Minimum Window Substring
        • 647. Palindromic Substrings
        • x 5. Longest Palindromic Substring
        • 125. Valid Palindrome
        • 20. Valid Parentheses
        • 49. Group Anagrams
        • 242. Valid Anagram
        • 5. Longest Palindromic Substring
        • 3. Longest Substring Without Repeating Characters
      • Matrix
        • x 48. Rotate Image
        • 79. Word Search
        • x 73. Set Matrix Zeroes
        • 54. Spiral Matrix
      • Linked List
        • 143. Reorder List
        • 19. Remove Nth Node From End of List
        • 23. Merge k Sorted Lists
        • 21. Merge Two Sorted Lists
        • 141. Linked List Cycle
        • 206. Reverse Linked List
  • Tip
    • Page 2
    • LinkedList
Powered by GitBook
On this page
  • without priority queue
  • With Priority Queue
  1. Overview
  2. 3. How to construct Algorithm? Paradigm
  3. MST (Minimum Spanning Tree)

Prim's Algorithm: undirected

Vertex, Priority Queue

// components count is 2
const edges: number[][] = [
  [
    [1, 3]
  ],
  [
    [0, 3],
    [3, 12]
  ],
  [
    [4, 10],
    [5, 20]
  ],
  [
    [1, 12]
  ],
  [
    [2, 10],
    [5, 15]
  ],
  [
    [2, 20],
    [4, 15]
  ]
];
// minimum spanning tree Forest
const answer = [
  [
    [1, 3]
  ],
  [
    [0, 3],
    [3, 12]
  ],
  [
    [4, 10]
  ],
  [
    [1, 12]
  ],
  [
    [2, 10],
    [5, 15]
  ],
  [
    [4, 15]
  ]
]

without priority queue

// Time: V^2 x V
function prim(edges) {
  if (edges.length < 2) 
    return [];

  const answer = new Array(edges.length);
  // fill weights
  for (let vertex = 0; vertex < edges.length; vertex++) {
    answer[vertex] = new Array();
  }

  const visited = new Array(edges.length).fill(false);
  
  let componentCount = 0;
  // V
  for (let vertex = 0; vertex < edges.length; vertex++) {
    if (visited[vertex] === true) 
      continue;

    // V^2
    findMST(edges, answer, visited, vertex);
    componentCount += 1;
  }

  if (componentCount > 1) {
    console.log('edges forms a minimum spanning FOREEST not TREE');
  }
  
  return answer;
}

function findMinimumIndex(arr) {
  let min = 0;
  
  for (let i = 0; i < arr.length; i++) {
    if (arr[min][0] <= arr[i][0]) continue;
    min = i;
  }
  
  return min;
}

// Time: V^V + (V + E) -> V^2
// Space: V, visited or V + E, answer  
function findMST(edges, answer, visited, start) {

  // E
  const q = [];
  for (const [next, w] of edges[start]) {
    q.push([w, start, next]);
  }
  visited[start] = true;


  // cnt > cnt of vertices V
  let cnt = 1;
  do {

    // V
    // find smallest weight connted from here vertex
    const min = findMinimumIndex(q);
    const lowestWeightedEdge = q[min];

    const [w, here, there] = lowestWeightedEdge;
    q.splice(min, 1);
    
    if(visited[there] === true)
      continue;
    
    answer[here].push([there, w]);
    answer[there].push([here, w]);
    

    // E
    for (const [next, w] of edges[there]) {
      if (visited[next] === true) continue;
      q.push([w, there, next]);
    }
    
    
    // console.log({
    //   visited,
    //   here,
    //   there,
    //   edge: edges[there],
    //   q
    // });

    visited[there] = true;
    
    cnt++;
  } while (q.length !== 0 && cnt < edges.length);
}



// Do not edit the line below.
exports.kruskalsAlgorithm = kruskalsAlgorithm;

With Priority Queue

change this part

    const min = findMinimumIndex(q);
    const lowestWeightedEdge = q[min];

to Priority Queue

const lowestWeightedEdge = minHeap.remove();

Time: O((V + E)logV) Space: O(V)

why?

  • logV?

기본적으로 E가 V보다 갯수가 많다. heap을 구성하는 갯수는 V 갯수가 최대이기 때문에 logV

우리는 기본적으로 V - 1개의 간선이 필요하기 때문이다.

  • why? V

모든 V를 돌린다.

  • why? E

우리는 각 vertex에 연결된 Edge를 큐에 삽입 한다

모든 간선과 Edge를 방문하고 (V + E) 각각 최소힙 삭제, 삽입을 하기 때문에 (V + E)LogV인데

V ≤ E 이므로 O(ELogV)이다

// Time: V^2 x V
function prim(edges) {
  if (edges.length < 2) 
    return [];

  const answer = new Array(edges.length);
  // fill weights
  for (let vertex = 0; vertex < edges.length; vertex++) {
    answer[vertex] = new Array();
  }

  const visited = new Array(edges.length).fill(false);
  
  let componentCount = 0;
  // V
  for (let vertex = 0; vertex < edges.length; vertex++) {
    if (visited[vertex] === true) 
      continue;

    // V^2
    findMSTWithPriorityQueue(edges, answer, visited, vertex);
    componentCount += 1;
  }

  if (componentCount > 1) {
    console.log('edges forms a minimum spanning FOREEST not TREE');
  }
  
  return answer;
}

function findMSTWithPriorityQueue(edges, answer, visited, start) {

  
  // E
  const arr = [];
  for (const [next, w] of edges[start]) {
    arr.push([w, start, next]);
  }

  const predicate = (arr, a, b) => arr[a][0] <= arr[b][0];
  const minHeap = new MinHeap(arr, predicate);
  visited[start] = true;
  console.log('heap:: ', minHeap.heap);

  // cnt > cnt of vertices V
  let cnt = 1;
  while (minHeap.heap.length !== 0 && cnt < edges.length) {
    // V
    const [w, here, there] =  minHeap.remove(); // LogV
    
    if(visited[there] === true)
      continue;
    
    answer[here].push([there, w]);
    answer[there].push([here, w]);

    // E
    for (const [next, w] of edges[there]) {
      if (visited[next] === true) continue;
      minHeap.insert([w, there, next]); // logV
    }

    visited[there] = true;
    cnt++;
  }
}

class MinHeap {
  constructor(arr, predicate = (a, b) => a <= b) {
    this.predicate = predicate;
    this.heap = this.buildHeap(arr);
  }

  buildHeap(arr) {
    let currentIndex = Math.floor((arr.length - 1 - 1) / 2);
    while (currentIndex >= 0) {
      this.siftDown(arr, currentIndex, arr.length - 1);
      currentIndex -= 1;
    }
    console.log('>>> ', arr);
    
    return arr;
  }

  siftDown(heap, currentIndex, endIndex) {
    
    let left = currentIndex * 2 + 1;
    while (left <= endIndex) {
      let min = left;
      const right = currentIndex * 2 + 2;
      if (heap[right] !== undefined && this.predicate(heap, right, min)) {
        min = right;
      }

      if (this.predicate(heap, currentIndex, min)) 
        break;

      this.swap(heap, min, currentIndex);
      currentIndex = min;
      left = currentIndex * 2 + 1;
    }
    
  }

  siftUp(heap, currentIndex) {
    let parentIndex = Math.floor((currentIndex - 1) / 2);
    while (parentIndex >= 0) {
      if (this.predicate(heap, parentIndex, currentIndex)) 
        break;
      this.swap(heap, parentIndex, currentIndex);
      currentIndex = parentIndex;
      parentIndex = Math.floor((currentIndex - 1) / 2);
    }
  }

  insert(v) {
    this.heap.push(v);
    
    this.siftUp(this.heap, this.heap.length - 1);
  }

  remove() {
    this.swap(this.heap, 0, this.heap.length - 1);
    const elementToRemove = this.heap.pop();
    this.siftDown(this.heap, 0, this.heap.length - 1);
    return elementToRemove;
  }

  swap(arr, a, b) {
    const temp = arr[a];
    arr[a] = arr[b];
    arr[b] = temp;
  }
}

// Do not edit the line below.
exports.kruskalsAlgorithm = kruskalsAlgorithm;

PreviousKruskal's Algorithm: undirectedNextProblem Sources

Last updated 1 year ago

프림 알고리즘(Prim's Algorithm)