10. Dijkstra algorithm
Last updated
Last updated
Dijkstra algorithm: directed, shortest path
743. Network Delay TimeMedium6.4K334Companies
You are given a network of n
nodes, labeled from 1
to n
. You are also given times
, a list of travel times as directed edges times[i] = (ui, vi, wi)
, where ui
is the source node, vi
is the target node, and wi
is the time it takes for a signal to travel from source to target.
We will send a signal from a given node k
. Return the minimum time it takes for all the n
nodes to receive the signal. If it is impossible for all the n
nodes to receive the signal, return -1
.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2
Example 2:
Input: times = [[1,2,1]], n = 2, k = 1
Output: 1
Example 3:
Input: times = [[1,2,1]], n = 2, k = 2
Output: -1
Constraints:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
All the pairs (ui, vi)
are unique. (i.e., no multiple edges.)
We do not need to visit a vertex already visited cuz visited vertex got a shortest path already from a start vertex
/**
* @param {number[][]} times
* @param {number} n
* @param {number} k
* @return {number}
*/
var networkDelayTime = function (times, n, k) {
// create adjs
// adjecent list
const adjs = {};
// minimum dist at vertex i
const dist = [];
// vertex where relaxation is done
const visited = new Set();
// track prev vertex connected to current i
const ids = [];
// initialize
for (let i = 0; i <= n; i++) {
adjs[i] = [];
ids[i] = i;
dist[i] = Infinity;
}
// create adjecent list
for (const [u, v, w] of times) {
adjs[u].push([v, w]);
}
// heap to track current vertex, no visited and minimum
const minHeap = new Heap([], (a, b) => a[1] <= b[1]);
// insert start vertex with distance 0
minHeap.insert([k, 0]);
dist[k] = 0;
while (minHeap.size > 0) {
// console.log('before:: ', minHeap.heap);
const [here, currentWeight] = minHeap.remove();
// other than using visited arr, we can just filter visited vertex by doing this
// property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
// if (dist[here] < currentWeight) continue;
const adj = adjs[here];
for (const [there, w] of adj) {
if (visited.has(there))
continue;
// current min distance to vertex there from start
const prev = dist[there];
// dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
const next = dist[here] + w;
if (prev > next) {
// change prev vertex
ids[there] = here;
// update minimum distance
dist[there] = next;
minHeap.insert([there, next]);
}
}
// console.log('after:: ', minHeap.heap);
visited.add(here);
}
let max = -Infinity;
// vertex starts from 1
for (let i = 1; i <= n; i++) {
if (dist[i] === Infinity) return -1;
max = Math.max(dist[i], max);
}
return max;
};
class Heap {
constructor(arr, predicate = (a, b) => a <= b) {
this.predicate = predicate;
this.size = arr.length;
this.heap = this.buildHeap(arr);
}
buildHeap(arr) {
let currentIndex = Math.floor((arr.length - 1 - 1) / 2);
while (currentIndex >= 0) {
this.siftDown(arr, currentIndex, arr.length - 1);
currentIndex--;
}
return arr;
}
insert(v) {
this.heap.push(v);
this.size++;
this.siftUp(this.heap, this.heap.length - 1);
}
remove(v) {
this.swap(this.heap, 0, this.heap.length - 1);
const elementToRemove = this.heap.pop();
this.size--;
this.siftDown(this.heap, 0, this.heap.length - 1);
return elementToRemove;
}
siftUp(heap, currentIndex) {
let parentIndex = Math.floor((currentIndex - 1) / 2);
while (parentIndex >= 0) {
if (this.predicate(heap[parentIndex], heap[currentIndex])) {
break;
}
this.swap(heap, parentIndex, currentIndex);
currentIndex = parentIndex;
parentIndex = Math.floor((currentIndex - 1) / 2);
}
return heap;
}
siftDown(heap, currentIndex, endIndex) {
let left = currentIndex * 2 + 1;
while (left <= endIndex) {
let min = left;
const right = currentIndex * 2 + 2;
if (heap[right] !== undefined && this.predicate(heap[right], heap[min])) {
min = right;
}
if (this.predicate(heap[currentIndex], heap[min])) break;
this.swap(heap, currentIndex, min);
currentIndex = min;
left = currentIndex * 2 + 1;
}
return heap;
}
swap(arr, a, b) {
[arr[b], arr[a]] = [arr[a], arr[b]];
}
}
LeetCode - The World's Leading Online Programming Learning Platform
/**
* @param {number[][]} times
* @param {number} n
* @param {number} k
* @return {number}
*/
var networkDelayTime = function (times, n, k) {
// create adjs
// adjecent list
const adjs = {};
// minimum dist at vertex i
const dist = [];
// track prev vertex connected to current i
const ids = [];
// initialize
for (let i = 0; i <= n; i++) {
adjs[i] = [];
ids[i] = i;
dist[i] = Infinity;
}
// create adjecent list
for (const [u, v, w] of times) {
adjs[u].push([v, w]);
}
// heap to track current vertex, no visited and minimum
const minHeap = new Heap([], (a, b) => a[1] <= b[1]);
// insert start vertex with distance 0
minHeap.insert([k, 0]);
dist[k] = 0;
while (minHeap.size > 0) {
const [here, currentWeight] = minHeap.remove();
// other than using visited arr, we can just filter visited vertex by doing this
// property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
// if (dist[here] < currentWeight) continue;
const adj = adjs[here];
for (const [there, w] of adj) {
// current min distance to vertex there from start
const prev = dist[there];
// dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
const next = dist[here] + w;
if (prev > next) {
// change prev vertex
ids[there] = here;
// update minimum distance
dist[there] = next;
minHeap.insert([there, next]);
}
}
}
let max = -Infinity;
// vertex starts from 1
for (let i = 1; i <= n; i++) {
if (dist[i] === Infinity) return -1;
max = Math.max(dist[i], max);
}
return max;
};
class Heap {
constructor(arr, predicate = (a, b) => a <= b) {
this.predicate = predicate;
this.size = arr.length;
this.heap = this.buildHeap(arr);
}
buildHeap(arr) {
let currentIndex = Math.floor((arr.length - 1 - 1) / 2);
while (currentIndex >= 0) {
this.siftDown(arr, currentIndex, arr.length - 1);
currentIndex--;
}
return arr;
}
insert(v) {
this.heap.push(v);
this.size++;
this.siftUp(this.heap, this.heap.length - 1);
}
remove(v) {
this.swap(this.heap, 0, this.heap.length - 1);
const elementToRemove = this.heap.pop();
this.size--;
this.siftDown(this.heap, 0, this.heap.length - 1);
return elementToRemove;
}
siftUp(heap, currentIndex) {
let parentIndex = Math.floor((currentIndex - 1) / 2);
while (parentIndex >= 0) {
if (this.predicate(heap[parentIndex], heap[currentIndex])) {
break;
}
this.swap(heap, parentIndex, currentIndex);
currentIndex = parentIndex;
parentIndex = Math.floor((currentIndex - 1) / 2);
}
return heap;
}
siftDown(heap, currentIndex, endIndex) {
let left = currentIndex * 2 + 1;
while (left <= endIndex) {
let min = left;
const right = currentIndex * 2 + 2;
if (heap[right] !== undefined && this.predicate(heap[right], heap[min])) {
min = right;
}
if (this.predicate(heap[currentIndex], heap[min])) break;
this.swap(heap, currentIndex, min);
currentIndex = min;
left = currentIndex * 2 + 1;
}
return heap;
}
swap(arr, a, b) {
[arr[b], arr[a]] = [arr[a], arr[b]];
}
}
while (minHeap.size > 0) {
const [here, currentWeight] = minHeap.remove();
// other than using visited arr, we can just filter visited vertex by doing this
// property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
if (dist[here] < currentWeight) continue;
const adj = adjs[here];
for (const [there, w] of adj) {
// current min distance to vertex there from start
const prev = dist[there];
// dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
const next = dist[here] + w;
if (prev > next) {
// change prev vertex
ids[there] = here;
// update minimum distance
dist[there] = next;
minHeap.insert([there, next]);
}
}
}