🔢
Algorithms & Data
  • Overview
    • 1. Sort
      • Selection Sort
      • Bubble Sort
      • Insertion Sort
        • Insertion Sort:: singly linked list
          • Recursive
          • Using Array O(N), O(N)
          • Using Iteration O(N), O(1)
      • Quick Sort
      • Merge Sort
      • Heap Sort
      • Counting Sort
        • Counting Sort
          • Sort a String
        • Bucket Sort
        • Radix Sort
      • Topological Sort
    • 2. Data Structures
      • Array
      • Stack
      • Queue
      • Tree
        • PreOrder, InOrder, PostOrder
          • Transfer between each
          • Traverse
        • Binary Tree
          • Binary Search Tree
      • Graph
        • Data Structure
        • Traverse Graph
        • Detect a cycle in a Graph
          • DFS *
            • undirected clean code
          • Union Find
          • Count edges - undirected only
      • Linked List
      • Trie
        • Javascript
        • Java
      • Union Find
        • Detect Cycle with Disjoint-set Union Find
        • Kruskal Algorithm
      • Heap
      • Matrix
      • Union Find: Disjoint Set
    • 3. How to construct Algorithm? Paradigm
      • Greedy Algorithm
        • Prim
        • Dijkstra
        • Prim vs Dijkstra
      • Dynamic Planning Techique
      • Dynamic Planning
      • Divide And Conquer
      • Brute force
      • Shortest path
        • BFS
        • Dijkstra algorithm: directed, shortest path
      • MST (Minimum Spanning Tree)
        • Prim vs Digkstra
        • Prim, Kruskal Why? only undirected graph?
        • Kruskal's Algorithm: undirected
        • Prim's Algorithm: undirected
  • Algorithm Problems
    • Problem Sources
    • AlgoExpert
      • Hardest
        • Merge Sort
      • Hard
        • Prim’s Algorithm
        • Dijkstra’s Algorithm
        • Kruskal’s algorithm vs Prim’s algorithm
        • Topological Sort
        • Max Sum Increasing Subsequence
        • Find Nodes Distance K
        • Max Path Sum In Binary Tree
        • Validate Three Nodes
        • Same BST ?
        • Zigzag Traverse
        • Min Rewards
        • Largest Range
        • Subarray Sort
        • Four Number Sum
      • Medium
        • Missing Numbers
        • Beat Seat
        • Suffix Trie Construction
        • One Edit
        • Minimum Characters For Words
        • Reverse Words in String
        • Valid IP Addresses
        • Group Anagrams
        • Longest Palindromic Substring
        • Next Greater Element
        • Sort Stack ⇒ recursive good -
        • Sunset Views
        • Balanced Brackets
        • Min Max Stack Construction
        • Three Number Sort ⇒ counting sort or radix sort ⇒ three pointer with in-place swap
        • Staircase Traversal ⇒ it is like the number of ways to change
        • Phone Number Mnemonics ⇒ can use word and index to create each case without concatenation
        • Power Set
        • Permutations -
        • Merging LinkedLists
        • Sum Of Linked Lists -
        • Remove Kth Node From End -
        • Linked List Construction - Doubly Linked List ?
        • Min Heap Construction
        • Valid Starting City
        • Task Assignment - use two pointer
        • Two Colorable - Graph
        • Minimum Passes Of Matrix
        • Cycle in Graph -
        • Remove Islands -
        • Youngest Common Ancestor
        • River Sizes -
        • Breadth First Search
        • Single Cycle Check
        • Union Find
        • Stable Internships
        • Kadane’s Algorithm
        • Levenshtein Distance
        • Min Number Of Coins For Change
        • Number Of Ways To Make Change
        • Number Of Ways To Traverse Graph
        • Max Subset Sum No Adjacent
        • Symmetrical Tree
        • Merge Binary Trees
        • Height Balanced Binary Tree
        • Find Successor
        • Binary Tree Diameter
        • Invert Binary Tree
        • Reconstruct Bst
        • Find Kth Largest Value In Bst
        • Min Height BST
        • BST Traversal
        • Validate Bst
        • BST Construction
        • Zero Sum Subarray + find indices of sub array
        • Merge Overlapping Intervals
        • First Duplicate Number
        • Array of Products
        • Longest Peak
        • Spiral Traverse
        • Monotonic Array
        • Move Element To End
        • Smallest Difference
        • Three Number Sum
      • Easy
        • Middle Node
        • Evaluate Expression Tree
        • Insertion Sort
        • Semordnilap
        • First Non Repeating Character
        • Generate Document
        • Run Length Encoding
        • Caesar Cipher Encryptor
        • Palindrome Check
        • Selection Sort
        • Bubble Sort
        • Find Three Largest Sum
        • Binary Search
        • Product Sum
        • Nth Fibonacci
        • Remove Duplicates From LinkedList
        • Tandem Bicycle
        • Class Photos
        • Minimum Waiting Time
        • Depth-first Search
        • Node Depths
        • Branch Sums
        • Find Closest Value In Bst
        • Non Constructible Change
        • Tournament Winner
        • Sorted Squared Array
        • Validate Subsequences
        • Two Number Sum
    • Daily Algorithms
      • 1. Topological Sort
      • 2. MST- Prim, Kruskal
      • 3. Cycle in a Graph
        • [Algo] Cycle in Graph (directed)
      • 4. Maximum sub array sum
        • Problem
        • Solutions
          • Brute Force
          • Divide And Conquer
          • Kadane's Algorithm - Dynamic
        • Empty Array allowed
        • Empty Array not allowed
        • Empty Array Not Allowed + circular
          • Double array:: O(N), O(N)
          • minimum subarray:: O(N), O(1)
      • 5. Detect a Cycle in a graph with a disjoint set (Union Find)
      • 6. Kruskal's Algorithm - Union Find
      • 7. Prim's Algorithm - Priority Queue
      • 8. Sort Array nlogn
      • 9. Shortest path - BFS
      • 10. Dijkstra algorithm
      • 11. Minimum spanning tree - points
      • 12. Minimum depth in a binary tree
      • 13. [Counting Sort]: H-index
      • 14. [shortest path]: Floyd-Warshall
      • 15. [Linked List]: reverse list
      • 16. [Linked List]: swap nodes in pairs
      • 17.[Linked List]: Merge k Sorted Lists
      • 18.[Linked list]:234. Palindrome Linked List
      • 19. [Linked List]: Linked List Cycle
      • 20. [Linked List] Reverse Linked List II
      • 21. [Linked List] sort a list - asc
      • 22. [Sort] Quick Sort
      • 23. [matrix] Spiral Matrix
      • 24. [matrix] Number of Islands
      • 25. [matrix] Valid Sudoku
      • 26. [matrix] Sudoku Solver
  • Top 75 LeetCode Questions to Save Your Time
    • Source
    • Problems
      • Interval
        • 56. Merge Intervals
        • 435. Non-overlapping Intervals
        • x 57. Insert Interval
      • Heap
        • x 295. Find Median from Data Stream
        • 347. Top K Frequent Elements
        • 23. Merge k Sorted Lists
      • Array
        • Untitled
        • 10. 11. Container With Most Water
        • 9. 15. 3Sum
        • 8. 33. Search in Rotated Sorted Array
        • 7. 153. Find Minimum in Rotated Sorted Array
        • x 6. 152. Maximum Product Subarray
        • 5. 53. Maximum Subarray
        • 4. 238. Product of Array Except Self
        • 1. Two Sums
        • 2. Best Time to Buy and Sell Stock
        • 3. Contains Duplicate
      • Binary
        • 190. Reverse Bits
        • 268. Missing Number
        • x 338. Counting Bits
        • 12. 191. Number of 1 Bits
        • 11. 371. Sum of Two Integers
      • Graph
        • x 417. Pacific Atlantic Water Flow
        • x 128. Longest Consecutive Sequence
        • 207. Course Schedule
        • 133. Clone Graph
        • 200. Number of Islands
      • Tree
        • x 297. Serialize and Deserialize Binary Tree
        • x 105. Construct Binary Tree from Preorder and Inorder Traversal
        • x 212. Word Search II
        • 211. Design Add and Search Words Data Structure
        • 208. Implement Trie (Prefix Tree)
        • 235. Lowest Common Ancestor of a Binary Search Tree
        • 230. Kth Smallest Element in a BST
        • 98. Validate Binary Search Tree
        • 572. Subtree of Another Tree
        • 297. Serialize and Deserialize Binary Tree ?
        • 102. Binary Tree Level Order Traversal
        • 124. Binary Tree Maximum Path Sum
        • 226. Invert Binary Tree
        • 100. Same Tree
        • 104. Maximum Depth of Binary Tree
      • Dynamic Programming
        • x 62. Unique Paths
        • x91. Decode Ways
        • 55. Jump Game
        • x 213. House Robber II
        • 198. House Robber
        • 377. Combination Sum IV
        • x 139. Word Break
        • 1143. Longest Common Subsequence
        • 300. Longest Increasing Subsequence
        • 322. Coin Change
        • 70. Climbing Stairs
        • 2023 0709 39. Combination Sum
      • String
        • x 76. Minimum Window Substring
        • 647. Palindromic Substrings
        • x 5. Longest Palindromic Substring
        • 125. Valid Palindrome
        • 20. Valid Parentheses
        • 49. Group Anagrams
        • 242. Valid Anagram
        • 5. Longest Palindromic Substring
        • 3. Longest Substring Without Repeating Characters
      • Matrix
        • x 48. Rotate Image
        • 79. Word Search
        • x 73. Set Matrix Zeroes
        • 54. Spiral Matrix
      • Linked List
        • 143. Reorder List
        • 19. Remove Nth Node From End of List
        • 23. Merge k Sorted Lists
        • 21. Merge Two Sorted Lists
        • 141. Linked List Cycle
        • 206. Reverse Linked List
  • Tip
    • Page 2
    • LinkedList
Powered by GitBook
On this page
  • with visited checking
  • without visited checking
  • without visited checking and adding filter condition
  1. Algorithm Problems
  2. Daily Algorithms

10. Dijkstra algorithm

Previous9. Shortest path - BFSNext11. Minimum spanning tree - points

Last updated 1 year ago

Dijkstra algorithm: directed, shortest path

743. Network Delay TimeMedium6.4K334Companies

You are given a network of n nodes, labeled from 1 to n. You are also given times, a list of travel times as directed edges times[i] = (ui, vi, wi), where ui is the source node, vi is the target node, and wi is the time it takes for a signal to travel from source to target.

We will send a signal from a given node k. Return the minimum time it takes for all the n nodes to receive the signal. If it is impossible for all the n nodes to receive the signal, return -1.

Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2

Example 2:

Input: times = [[1,2,1]], n = 2, k = 1
Output: 1

Example 3:

Input: times = [[1,2,1]], n = 2, k = 2
Output: -1

Constraints:

  • 1 <= k <= n <= 100

  • 1 <= times.length <= 6000

  • times[i].length == 3

  • 1 <= ui, vi <= n

  • ui != vi

  • 0 <= wi <= 100

  • All the pairs (ui, vi) are unique. (i.e., no multiple edges.)

with visited checking

We do not need to visit a vertex already visited cuz visited vertex got a shortest path already from a start vertex

/**
 * @param {number[][]} times
 * @param {number} n
 * @param {number} k
 * @return {number}
 */
var networkDelayTime = function (times, n, k) {
    // create adjs

    // adjecent list
    const adjs = {};
    // minimum dist at vertex i
    const dist = [];
    // vertex where relaxation is done
    const visited = new Set();
    // track prev vertex connected to current i
    const ids = [];

    // initialize
    for (let i = 0; i <= n; i++) {
        adjs[i] = [];
        ids[i] = i;
        dist[i] = Infinity;
    }

    // create adjecent list
    for (const [u, v, w] of times) {
        adjs[u].push([v, w]);
    }

    // heap to track current vertex, no visited and minimum 
    const minHeap = new Heap([], (a, b) => a[1] <= b[1]);
    
    // insert start vertex with distance 0
    minHeap.insert([k, 0]);
    dist[k] = 0;

    while (minHeap.size > 0) {
        // console.log('before:: ', minHeap.heap);
        const [here, currentWeight] = minHeap.remove();

        // other than using visited arr, we can just filter visited vertex by doing this
        // property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
        // if (dist[here] < currentWeight) continue;
        
        const adj = adjs[here];
        for (const [there, w] of adj) {
            if (visited.has(there)) 
                continue;
            
            // current min distance to vertex there from start
            const prev = dist[there];
            
            // dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
            const next = dist[here] + w; 
            
            if (prev > next) {
                // change prev vertex
                ids[there] = here;
                // update minimum distance 
                dist[there] = next;

                minHeap.insert([there, next]);
            }
        }
        // console.log('after:: ', minHeap.heap);

        visited.add(here); 
    }

    let max = -Infinity;
    // vertex starts from 1
    for (let i = 1; i <= n; i++) {
        if (dist[i] === Infinity) return -1;
        max = Math.max(dist[i], max);
    }

    return max;
};

class Heap {
    constructor(arr, predicate = (a, b) => a <= b) {
        this.predicate = predicate;
        this.size = arr.length;
        this.heap = this.buildHeap(arr);
    }

    buildHeap(arr) {
        let currentIndex = Math.floor((arr.length - 1 - 1) / 2);
        while (currentIndex >= 0) {
            this.siftDown(arr, currentIndex, arr.length - 1);
            currentIndex--;
        }

        return arr;
    }

    insert(v) {
        this.heap.push(v);
        this.size++;

        this.siftUp(this.heap, this.heap.length - 1);

    }

    remove(v) {
        this.swap(this.heap, 0, this.heap.length - 1);
        const elementToRemove = this.heap.pop();
        this.size--;
        
        this.siftDown(this.heap, 0, this.heap.length - 1);
        return elementToRemove;
    }

    siftUp(heap, currentIndex) {
        let parentIndex = Math.floor((currentIndex - 1) / 2);
        while (parentIndex >= 0) {
            if (this.predicate(heap[parentIndex], heap[currentIndex])) {
                break;
            }

            this.swap(heap, parentIndex, currentIndex);
            currentIndex = parentIndex;
            parentIndex = Math.floor((currentIndex - 1) / 2);
        }
        return heap;
    }

    siftDown(heap, currentIndex, endIndex) {
        let left = currentIndex * 2 + 1;

        while (left <= endIndex) {
            let min = left;
            const right = currentIndex * 2 + 2;
            if (heap[right] !== undefined && this.predicate(heap[right], heap[min])) {
                min = right;
            }

            if (this.predicate(heap[currentIndex], heap[min])) break;
            this.swap(heap, currentIndex, min);
            currentIndex = min;
            left = currentIndex * 2 + 1;
        }

        return heap;
    }

    swap(arr, a, b) {
        [arr[b], arr[a]] = [arr[a], arr[b]];
    }

}

without visited checking

/**
 * @param {number[][]} times
 * @param {number} n
 * @param {number} k
 * @return {number}
 */
var networkDelayTime = function (times, n, k) {
    // create adjs

    // adjecent list
    const adjs = {};
    // minimum dist at vertex i
    const dist = [];
    // track prev vertex connected to current i
    const ids = [];

    // initialize
    for (let i = 0; i <= n; i++) {
        adjs[i] = [];
        ids[i] = i;
        dist[i] = Infinity;
    }

    // create adjecent list
    for (const [u, v, w] of times) {
        adjs[u].push([v, w]);
    }

    // heap to track current vertex, no visited and minimum 
    const minHeap = new Heap([], (a, b) => a[1] <= b[1]);
    
    // insert start vertex with distance 0
    minHeap.insert([k, 0]);
    dist[k] = 0;

    while (minHeap.size > 0) {
        const [here, currentWeight] = minHeap.remove();

        // other than using visited arr, we can just filter visited vertex by doing this
        // property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
        // if (dist[here] < currentWeight) continue;
        
        const adj = adjs[here];
        for (const [there, w] of adj) {
            
            // current min distance to vertex there from start
            const prev = dist[there];
            
            // dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
            const next = dist[here] + w; 
            
            if (prev > next) {
                // change prev vertex
                ids[there] = here;
                // update minimum distance 
                dist[there] = next;

                minHeap.insert([there, next]);
            }
        }
    }

    let max = -Infinity;
    // vertex starts from 1
    for (let i = 1; i <= n; i++) {
        if (dist[i] === Infinity) return -1;
        max = Math.max(dist[i], max);
    }

    return max;
};

class Heap {
    constructor(arr, predicate = (a, b) => a <= b) {
        this.predicate = predicate;
        this.size = arr.length;
        this.heap = this.buildHeap(arr);
    }

    buildHeap(arr) {
        let currentIndex = Math.floor((arr.length - 1 - 1) / 2);
        while (currentIndex >= 0) {
            this.siftDown(arr, currentIndex, arr.length - 1);
            currentIndex--;
        }

        return arr;
    }

    insert(v) {
        this.heap.push(v);
        this.size++;

        this.siftUp(this.heap, this.heap.length - 1);

    }

    remove(v) {
        this.swap(this.heap, 0, this.heap.length - 1);
        const elementToRemove = this.heap.pop();
        this.size--;
        
        this.siftDown(this.heap, 0, this.heap.length - 1);
        return elementToRemove;
    }

    siftUp(heap, currentIndex) {
        let parentIndex = Math.floor((currentIndex - 1) / 2);
        while (parentIndex >= 0) {
            if (this.predicate(heap[parentIndex], heap[currentIndex])) {
                break;
            }

            this.swap(heap, parentIndex, currentIndex);
            currentIndex = parentIndex;
            parentIndex = Math.floor((currentIndex - 1) / 2);
        }
        return heap;
    }

    siftDown(heap, currentIndex, endIndex) {
        let left = currentIndex * 2 + 1;

        while (left <= endIndex) {
            let min = left;
            const right = currentIndex * 2 + 2;
            if (heap[right] !== undefined && this.predicate(heap[right], heap[min])) {
                min = right;
            }

            if (this.predicate(heap[currentIndex], heap[min])) break;
            this.swap(heap, currentIndex, min);
            currentIndex = min;
            left = currentIndex * 2 + 1;
        }

        return heap;
    }

    swap(arr, a, b) {
        [arr[b], arr[a]] = [arr[a], arr[b]];
    }

}

without visited checking and adding filter condition

while (minHeap.size > 0) {
        const [here, currentWeight] = minHeap.remove();

        // other than using visited arr, we can just filter visited vertex by doing this
        // property a -> b -> c, a -> c is shortest path then a->b, b -> c also shortest
        if (dist[here] < currentWeight) continue;
        
        const adj = adjs[here];
        for (const [there, w] of adj) {
            
            // current min distance to vertex there from start
            const prev = dist[there];
            
            // dist[here] is equal to currentWeight if we do not put visited vertex again into the heap
            const next = dist[here] + w; 
            
            if (prev > next) {
                // change prev vertex
                ids[there] = here;
                // update minimum distance 
                dist[there] = next;

                minHeap.insert([there, next]);
            }
        }
    }

LeetCode - The World's Leading Online Programming Learning Platform
LogoNetwork Delay Time - LeetCodeLeetCode